Kredi Skorlama / Kredi Analizi

Her şirketin yatırım yapacağı ya da finans anlamında gelişim konusunda yardımcı olacağı belirli start-up’lar mevcuttur. Belirli analizler sonucu, yatırımcı firma yatırım yapacağı ve bünyesine alacağı firmayı belirler. Bu sayede gelişimi göz önüne alarak, getiri ile doğru orantılı olarak sağlayacağı katkı miktarı önceden hesaplanır. Bankalarda da müşterileri arasında bu tarz bir analiz yöntemi gelişmiştir. Kısaca banka ile müşteri arasında kredi başvurusunda kredi skorlama işlemleri yapılmaktadır. Bunun yapılma amacı temelde insanlar aslında alacağı krediyi öder mi ya da ödeyebilecek mi diye testler ile değerlendirilir. Buna makine öğrenmesi konusunda kredi skorlama denmektedir. Yapılan işlemler sonrası, krediye başvuran kişiye olumlu ya da olumsuz bir geri dönüş yapılmaktadır. Bu doğrultuda değerlendiren birçok metrik bulunmaktadır. Bunlara örnek olarak; insanların aldıkları maaş miktarı, kariyer geçmişi, daha öncesinde kredi alma durumları ve bunun gibi birçok daha detaylı olarak incelenecek olan özellikler bulunmaktadır. Bunların değerlendirilmesi sonucu, oluşacak olan 1 ve 0 değerleri bize olumlu ya da olumsuz anlam vermektedir.

 

 

Bankaların çoğu konuda olduğu gibi bu konuda da geniş çaplı araştırma yaparak, sahip oldukları verileri analiz ettikten sonra makine öğrenmesi işlemlerine sokmaktadır. Bu işlemler sonucunda, mantık sınaması adımları üzerinde duruma göre birkaç optimizasyon işlemleri yapıp son model hali hazırlanır. Ardından bu durumlar hızlanarak hemen her kredi başvurusu yapan insanlar için test edilir. Değer olarak ise 0 ve 1 değerleri atanır. İşlemler sonucunda 0 çıktısı bize, ‘bu kişiye kredi vermemizi önermez’ tam tersi yani 1 çıktısı geldiğinde ise ‘bu kişiye kredi verebilirsiniz’ diyerek bize müşteri segmentasyon işlemini de yapmış olur. Son adım da veri bilimi kadrosu sayesinde hallolduktan sonra, bizim için geriye kalan son adım ise bu bilgileri gerekli departmanlara ileterek, çıkan sonuçlara göre kişilerin başvurularını sonuçlandırarak, geri dönüş yapmak kalır. Analizlerin önemi, bir banka için kritik bir öneme sahiptir. Çünkü yapılan en ufak hatalar, yüklü miktarların kayıplarına sebep olabilmektedir. Bu sebeple yapılan her kredi skorlama işlemi, bankaya olumlu şekilde dönmelidir.

 

 

 

Kredi skorlama işlemleri, her banka için büyük önem taşımaktadır. Kasadan çıkan paranın miktarı ve kredi verilecek kişinin sorumluluğunu tamamen yerine getirmemesi, maddi anlamda büyük sorunlara yol açacaktır. Bundan ötürü arka tarafta çalışan veri bilimi ekibi, bu konuda uzman olmalı ve tedbirleri her koşula göre değerlendirmelidir. Buna ek olarak, insanların kişisel bilgilerini de iyice analiz edip başvurusuna mantıklı bir dönüş yapılmalıdır. Veri ön işleme adımlarını düzenleyip gerekli değişkenlerin üzerinden yapılan işlemler sonrası, süreç biraz daha verinin hazır hale getirilmesiyle alakalıdır. Kredi skorlama konusunda kritik derecede öneme sahip olan bir diğer mühim konu, veri ön işleme adımları ve sonrasında atılacak analiz adımlarıdır. Veri Bilimi ekibi, değişken mühendisliğini de kendileri yaparak değişken etkilerini ve onların korelasyonlarını aralarında oluşan bağları da doğru bir şekilde analiz etmelidir. Bu işlemler sonrasında ise, mantıklı bir sonucun ortaya çıkması kaçınılmaz olacaktır. Hata payını minimum yapmak, tamamen veriyi mükemmele yakın bir şekilde ayarlamak ve gerekli parametreleri değerlendirmektir.

 

 

Kredi skorlaması yapmak için gerekli işlemlerin en başında makine öğrenmesi algoritmasının oluşturulması ve model öncesi, değişkenlerin bir kere daha kontrol edilmesi gereklidir. Çünkü yapılan işlemlerin tamamen değişkenler ile bağlantısı vardır. Bundan dolayı, kategorik ya da numerik değişkenlerin modele etkisi farklılık göstermektedir. Ayrıca bu modeli kurarken de dikkatli şekilde ayarlanması gerekmektedir. Kullanacak olduğumuz parametrelerin özel olarak Python programlama dili kullanılıyorsa, içerisinde bulunan GridSearchCV() metodu sayesinde, parametreler denenebilir ve sonrasında en uygun parametreler modelin içerisine entegre edilir. Böylece kredi skorlama konusunda daha başarılı bir şekilde yol alabilir. Bu da verilen hizmetin seviyesini arttırır ve bu sayede insanların beklentilerini karşılayabilir, onlara uygun şekilde kişiye özel bir hizmet sağlanabilir. Memnuniyet seviyesi üst düzey olan kişiler, banka ile olan bağını geliştirir. Ek olarak, psikolojik olarak kendilerini daha güvende hissederler. İnsanların en temel özelliği ise bir yerlere ait ya da bağlı hissetmektir. Bunu sağlamak, sahip olunan müşteri potansiyelini arttırabilir. Kendi reklamınızın yapılmasını isterseniz, müşterileriniz ile aranızdaki bağı iyi derecede tutabilir ve onların size olan bağlılığını arttırmanız yeterli olacaktır. Buna direkt etki eden şeylerden birisi ise şüphesiz kredi skorlamasıdır.

 

 

References :

-https://globalaihub.com/examples-of-artificial-intelligence-in-life/

-https://globalaihub.com/machine-learning-makine-ogrenimi/

-https://www.cgap.org/sites/default/files/publications/2019_07_Technical_Guide_CreditScore.pdf

-https://www.moodysanalytics.com/solutions-overview/credit-origination/credit-assessment

-https://corporatefinanceinstitute.com/resources/knowledge/credit/credit-analysis-process/

Bilim İnsanları, Robotların Ağrıyı Algılaması ve Kendi Kendine Onarmasına Yardımcı Olmak İçin “Mini Beyinler” Geliştiriyor

Nanyang Teknoloji Üniversitesi’nde (Singapur) çalışan bilim insaları, beyinden ilham alan bir yaklaşım kullanarak, robotların ağrıyı tanıması ve hasar gördüğünde kendi kendine kendini onarması için yapay zekaya (AI) sahip olmanın bir yolunu bulmanın üzerine çalışıyorlar. NTU tarafından üretilen robotlar yakın zamanda hayatımızda yerini alacak.

Sistemde, fiziksel bir kuvvetin uyguladığı anlamak, basınçtan kaynaklanan ‘ağrıyı’ işlemek ve yanıtlamak için yapay zeka destekli sensör kitleri bulunuyor. Robotun, insan müdahalesine gereksinimi olmadan, küçük bir ‘yaralandığında’ kendi hasarını tespit etmesine ve onarmasına da olanak sağlıyor ve hızlıca kendini tamir ediyor.

Designed by stories / Freepik

Günümüzde robotlar, yakın çevreleri hakkında bilgi üretmek için bir sensör ağı kullanıyor. Örneğin, bir felaket kurtarma robotu, enkaz altında hayatta kalanı bulmak için kamera ve mikrofon sensörlerini kullanır ve kişiyi, kollarındaki dokunma sensörlerinden kılavuzluk ederek dışarı çıkarır. Bir fabrikada montaj hattında çalışan bir endüstriyel fabrika robotu, robotun kolunu doğru konuma yönlendirmek için görüş kullanır ve nesnenin kaldırıldığında kayıp kaymadığını belirlemek için sensörlere dokunur. Yani günümüz sensörleri tipik olarak bilgiyi işlemiyor. Ancak öğrenmenin gerçekleştiği tek bir büyük, güçlü, merkezi işlem birimine gönderiyor. Bu durum yanıt sürelerinin gecikmesine neden olur. Aynı zamanda bakım ve onarım gerektirecek, uzun ve maliyetli olabilecek hasarları gündeme getiriyor.

NTU’lu bilim insanlarının yeni yaklaşımı, yapay zekayı, robotik cilde dağıtılmış ‘mini beyinler’ gibi davranan çok sayıda küçük, daha az güçlü işleme birimine bağlı sensör düğümleri ağına yerleştiriyor. Bilim insanlarının, bu, öğrenmenin yerel olarak gerçekleştiği ve robot için kablolama gereksinimlerinin ve yanıt süresinin geleneksel robotlara göre beş ila on kat azaldığı anlamına geliyor.

Designed by stories / Freepik

Bu projenin yardımcı yazarı Elektrik ve Elektronik Mühendisliği Fakültesi’nden Doç. Dr. Arindam Basu, “Robotların bir gün insanlarla birlikte çalışabilmesi için, bizimle güvenli bir şekilde etkileşime girmelerinin nasıl sağlanacağı bir endişe. Bu nedenle, Dünyanın dört bir yanındaki bilim adamları, robotlara bir farkındalık duygusu getirmenin, örneğin acıyı ‘hissedebilme’, buna tepki verebilme ve zorlu çalışma koşullarına dayanma gibi yollar buluyor. Bununla birlikte, gereken çok sayıda sensörü bir araya getirmenin karmaşıklığı ve bu tür bir sistemin sonuçta ortaya çıkan kırılganlığı, yaygın olarak benimsenmesi için büyük bir engeldir.

Çalışmanın ilk yazarı, aynı zamanda NTU Malzeme Bilimi ve Mühendisliği Okulu’nda Araştırma Görevlisi olan Rohit Abraham John, “Bu yeni cihazların kendi kendini iyileştirme özellikleri, robotik sistemin ne zaman kendini tekrar tekrar birleştirmesine yardımcı oluyor ‘dedi. Oda sıcaklığında bile bir kesik veya çizikle yaralanmış. Bu, biyolojik sistemimizin nasıl çalıştığını taklit eder, tıpkı bir kesikten sonra insan derisinin kendi kendine iyileşmesi gibi.

Designed by stories / Freepik

Nesneleri tanımak için ışıkla etkinleşen cihazları kullanmak gibi nöromorfik elektronikler üzerindeki önceki çalışmalarını temel alan ve üzerine çalışan NTU araştırma ekibi, şimdi daha büyük ölçekli uygulamalar için sistemlerini geliştirmek üzere endüstri ortakları ve hükümet araştırma laboratuvarlarıyla işbirliği yapmayı düşünüyor ve robotların ağrıyı algılaması ve kendi kendine kendini onarmasına yardımcı olmak için “Mini Beyinler” geliştiriyor. NTU tarafından üretilen robotlar hayatımızın bir parçası olacak.

Kaynakça

  1. https://www.sciencedaily.com/releases/2020/10/201015101812.htm
  2. http://www.freepik.com
  3. https://globalaihub.com/cahit-arf-makineler-dusunebilir-mi/