Hareketli Ortalama Algoritmasıyla Al – Sat Tavsiyeleri

Finans alanında çalışan Veri Bilimciler, genellikle portföy optimizasyonu, al – sat işlemleri ve portföy getirisi gibi hesapları yapar. Bu işin borsa üzerinde önemi çok üst seviyededir. Çünkü verilen her karar, yapılacak olan kâr miktarını etkiler. Bundan ötürü adımları dikkatli seçerek, üzerinde çalışılan sisteme entegre edilmelidir. Borsa içerisinde dünya ile etkileşim halinde olan mekanizma mevcut ve bunun değişimlerine hızlı şekilde adapte olabilen firmalar hızlıca fark yaratıp sürdürülebilir bir hal almalıdır. Bu sayede kendi farkını ortaya koyarken pazarlama şekillerini değiştirip piyasa içerisinde aktif olabilirler. Marka olarak danışmanlık sunan ve değişikliklere adapte olma potansiyeli yüksek olan firmalar, kendi isimlerinden sık bir şekilde bahsettirebilirler. Robot danışmanların arka planında yoğun bir şekilde makine öğrenmesi ve derin öğrenme algoritmaları yatmaktadır. Robot danışman sunan her şirket, kendi bünyesinde sağlam bir altyapıya sahiptir. Kodlama kısmı biraz karmaşık olsa bile sonuç kısmına vardığımız an, başarının tamamını kendi gözlerimizle göreceğimiz. Buna istinaden çıktıyı alt resimde örnek olması adına koyuyorum.

 
 
Aslında üstte gördüğünüz resim, projenin son halini temsil ediyor. Ulaşmak isteyenler için sizlere kaynaklar kısmında kod bütününü bırakacağım ve kendi sistemlerinize kolay bir şekilde adapte edebileceksiniz. Not olarak şunu belirtmeliyim. Ben Türkiye borsası içerisinde yer alan Aselsan şirketini kullanarak bu kodlamayı yaptım. Ek olarak burada gördüğünüz herhangi bir işlem yatırım tavsiyesi değildir. Bunları belirttikten sonra alt tarafta gördüğünüz şekilde kütüphaneleri ekleyip veri setimizi okuyoruz. Ardından veri hakkında istatistiksel çıktıları almak için describe() fonksiyonunu kodluyoruz. Burada ilgilendiğimiz değişken, borsanın kapanışını temsil eden ‘close’ değişkeni üzerine olacak. Veri setinin tarihlerini ben 1 Ocak 2017 itibari ile alarak kendi analizimi gerçekleştirdim. Siz istediğiniz herhangi bir zaman üzerinden analizinizi yapabilirsiniz fakat tek olması gereken şey, benim kullandığım şekilde kullanabilmeniz için hisse için tarihsel veri seti, gerekli kütüphaneler içerisinde bulunmalıdır. Aksi takdirde kodunuz çalışmayacak ve hata üretecektir. Github linkini koyduğum kodun detaylarını inceleyebilirsiniz. Herhangi bir sorunuz olursa mail adresimden bana ulaşabilirsiniz.
 

 
Borsa içerisinde birçok farklı şekilde teknik analiz yöntemi vardır. Biz burada tamamen hareketli ortalama üzerinden devam edeceğiz. Hareketli ortalama yöntemi, borsa içinde kullanılan en yaygın yöntemlerden birisidir. Bu yöntem sayesinde borsa içinde al sat tarzı işlemleri anlık olarak takip eden birçok insan vardır. Bunlara ekleyeceğimiz teknik analiz metotları halen mevcuttur. Örnek vermek gerekirse RSI, Bolinger Bandı, MACD ve Fibonacci Düzeltme Seviyeleri sayılabilir. Alt tarafta gördüğünüz çizgiler, bizim için window() fonksiyonu ile at sat işlemlerini yaptıracak, hareketli ortalama yöntemidir. Görselde mavi çizgi asıl fiyatları temsil etmektedir. Bunun haricinde diğer çizgilerin kesişim noktaları bize al sat olarak dönüyor ve getirisini kendimiz ölçebiliyoruz. Buy_sell adını verdiğim fonksiyon sayesinde bize gerekli işlemleri yapıyor. Bu da bizim için hazırlığı yapıyor. Bizim için buranın çalışması hali, işlemlerinin tamamının bittiğini gösterir. Artık geriye sadece gerekli atamaların yapılıp fonksiyonun görsel olarak en başta gösterdiğim şekilde sunumu kalmıştır. Bunu yapabilmek için matplotlib kütüphanesi size yardımcı olacaktır.
 

 
Bu yazının devamını kendimi geliştirdiğim sürece gelecek ve bunu bir seri halinde yazmayı düşünüyorum. Borsa içerisinde kullanılan al sat işlemleri ve teknik analiz metotlarının bunlara etkilerini sizlere açıklayıp bu alanda kariyer düşünen herkese yardımcı olmayı hedefliyorum. Borsa içerisinde robot danışman üzerinden işlem yapan birçok start-up bulunmaktadır. Bununla birlikte sektör bazında büyük firmalar, bu alanda çalışacak ve gelişime açık birçok ufak şirkete yatırım yaparak, piyasa içerisinde yeni şeyleri keşfederken sürekliliğini sağlamaya devam ediyor. Bilindiği üzere borsa en ufak şeylerden bile etkilenip kâr – zarar durumlarını hızlıca değiştirebiliyor. Önceden olacaklara karşı bilgi sahibi olan büyük firmalar, bu tarz değişken ortamlarını tahmin ederek piyasa içerisinde sağlam adımlar atarak kâr marjını koruyor. Bunları oluştururken kullandığı analiz sistemlerinde birçok teknik analiz metodu bulunmaktadır. Böyle işlemlerin ölçeklenebilir olması da sistemin ne tür tepki vereceğini ve verdiği tepkinin olumlu anlamda olacağının garantisini verebiliyor. Hisse fiyatlarını değerlendirip teknik analiz metotlarını Python programlama dili üzerinde işlemeye devam edeceğim. Bunun için takipte kalarak geri bildirimde bulunabilirsiniz.
 

 

References:

http://globalaihub.com/robo-advisory-in-ai/
http://globalaihub.com/importance-of-data-quality-and-data-processing/
https://github.com/tanersekmen/stocks-buy-sell/blob/main/buy-sell.ipynb
https://www.tradingview.com/symbols/BIST-ASELS/technicals/
https://finance.yahoo.com/quote/ASELS.IS?p=ASELS.IS&.tsrc=fin-srch

Leave a Reply