Python Veri Bilimi Kütüphaneleri 2 – Numpy Metodoloji

Python içerisinde en önemli ve temel olarak bakılan kütüphanelerden birisi de şüphesiz numpy kütüphanesidir. Bu serinin devamında öncelikle pandas kütüphanesinden şimdi de numpy ile devam edeceğim. Genelde sahip olduğu kütüphane bazlı özelliklerde fonksiyonel yapısı, diğer kütüphanelere göre daha sağlam bir altyapıya dayanmaktadır. Bundan ötürü, yapılacak olan matematiksel işlemleri de hızlıca ve sağlıklı bir şekilde yapabilmektedir. Açılımı zaten python içerisinde Numerical (num) python (py) olarak bilinmektedir. Buradan da anlaşıldığı üzere, matematiksel yönü kuvvetli, istenen sonuçlara hızlı ve kolay şekilde ulaşması mümkün bir kütüphanedir. Makine Öğrenmesi ve Derin Öğrenme konularında vazgeçilmez yapı taşı kütüphanelerinden birisidir. Temel anlamda yapılan her işlemin arka planında kendisi rol oynar. Burada bahsedilen şey array halde bulunan matrisler ve onların durumlarına göre kendi aralarındaki işlemler, çıktılarının hesaplanması ve proje olarak yapılan iş esasında matrisleri kullanmak en gerekli koşuldur. Genellikle bunu Image Processing işlemlerinde sıkça görsek bile, bu alanda çalışacak olan kişilerin yapacağı işlemlerde numpy bilgisi mutlaka olmalıdır.

 

Başlı başına bir bütün olarak kullanılan bu kütüphane, sizlere kullanacağınız modeller için uygun matematiksel yapılar sunar. Bu sayede, yapacağınız işlemlerin betimsel anlamda açıklamaları da aynı şekilde daha mantıklı olur. Üst paragrafta da bahsettiğim gibi matris işlemleri matematik tabanında en mühim olaydır. Bu halihazırda sizin yapacak olduğunuz işlemler bütününe yayılır ve katman bazlı olarak işlem süreçlerinde numpy size kolaylık sağlar. En önemli katman işlemlerini, resimleri aktif olarak işlediğimiz zaman gözle görülebilir bir şekilde fark edebiliriz. OpenCV kütüphanesi işlemler boyunca gerekli yükü sırtlasa bile, herhangi bir numpy kütüphanesinin array yapısı aracılığı ile yapılmamış işlemler sürdürülebilir bir halde olmaz. Yapılacak birçok işlem arkasında, matrisler ve matrislerin çarpımları olacağı için numpy kütüphanesi bu işlerin vazgeçilmez değeridir. Fonksiyonel yapısının verdiği imkanlar doğrultusunda tam anlamıyla kullanıcı dostu bir kütüphanedir. Dünya çapında bu alanda çalışan kişilere yapılan testlere göre, Python kütüphaneleri içerisinde en kullanışlı ilk 5 kütüphane içerisindedir. Kullanım alanları da bununla doğru orantılı olarak artmaktadır.

 

 

Derin öğrenme ve Makine Öğrenmesi konuları, sanılanın aksine sadece uzun satırlar süren kodları yazmak demek değildir. Bu sebepten insanların çoğu, arka planında dönen olayları bilmeden kod yazmaya hatta bu alanda kariyer yapmaya başlıyorlar. Bu olayların arka tarafında yoğun bir matematik ve istatistik bilgisi yatmaktadır ki buna en iyi örnek, Image Processing işlemleridir. Çünkü arka tarafında tamamen matematik yatmaktadır ki bu işlemler matrisler ve kullanılan kütüphaneler içerisinde numpy vardır. Bu da bu kütüphanenin hemen hemen her yerde aktif görev aldığının en büyük kanıtıdır. Bu şekilde çok fonksiyonlu olan python içerisinde kütüphane yoktur. Çünkü her alanda mutlaka bulunması gereken iki kütüphane vardır. Bunlar numpy ve pandas kütüphaneleridir. Bunlar hem veriyi işleme hem veri üzerinde sayısal işlemleri yapma konusunda kolaylık sağlarken bizlere veriye bakış açısında oluşan farklılıkları gösterir. Bu da Python bünyesinde bulunan kütüphanelerin özellikle veri işleme ve veri analizleri üzerine olan kütüphanelerin ne derece mühim olduğunun bir kanıtıdır.

 

 

Numpy kütüphanesinin veri şekillendirme ve hazırlama konusunda büyük ölçüde fark yarattığını net bir şekilde söyleyebilirim. Numpy kütüphanesi içerisinde bulunan reshape, array, exp, std, min, sum gibi birçok anlamda kullanışlı diyeceğimiz fonksiyonlara sahiptir. Diğer kütüphanelerden ayırt eden en temel seviyesi aslında budur. Bunun gerekli detaylarına ulaşmak isteyenler için kaynaklar kısmında bunlara dair bilgiler bırakacağım. Buradan siz de numpy kütüphanesini kullanırken ne gibi özelliklerden faydalanabilirsiniz ya da sayısal işlemlerde ne tarz kolaylıklar yakalayabilirsiniz bunları kendiniz de cheat sheet veya numpy’ın kendine ait olan internet sitesinden bulabilirsiniz.

 

Bu zaman kadar okuduğunuz ve yazılarımı takip ettiğiniz için teşekkür eder, iyi günler dilerim.

 

References:

-https://s3.amazonaws.com/assets.datacamp.com/blog_assets/Numpy_Python_Cheat_Sheet.pdf

-https://numpy.org/

-https://cs231n.github.io/python-numpy-tutorial/

-https://www.w3schools.com/python/numpy_intro.asp

-https://globalaihub.com/python-veri-bilimi-kutuphaneleri-1-pandas-metodoloji/

-https://globalaihub.com/python-data-science-libraries-1-pandas-methodology/

Leave a Reply

Your email address will not be published. Required fields are marked *