The Movie “Her”: An Approach to Human-Intelligent Machine Interactions

Seven years ago, under the direction of Spike Jonze, a not-so-classic movie was released, although it contains a classic romance at its core: Her. As in all romantic movies, the girl saves the man from the depressive process and leaves the man in solitude when their full relationship reaches top speed. Despite this classic script, it is the most talked-about and still analyzed film of the year it was released.

Data Mining and Being a Data Miner

Hello everyone, as a statistician, I can say that most statisticians dream of becoming a data miner but the road to be followed for this is long and bumpy. According to Google Trends data, “Data mining” and “Data Miner” searches in Google Web Search are very popular around the world. So what makes data mining so attractive?

Currently, the multiplicity of data and the difficulty of using the information required after processing data has increased the need for data mining.

Data mining is an automatic or semi-automated technical process used to analyze and interpret large amounts of dispersed information and turn it into information. Data mining is frequently used in marketing, retail, banking, healthcare, and e-commerce application areas.

Stages of Data Mining

We can basically consider the data mining process is:

  1. Obtain and secure the data stack
  2. Smoothing
  3. Damy-Optimization
  4. Data Reduction
  5. Normalization
  6. Applying Related Data Mining Algorithms
  7. Testing and training results in related software languages (R, Python, Java)
  8. Evaluation and presentation of results

To become a data miner requires programming, mathematics, statistics, machine learning, and some personal skills. Let’s examine these requirements in a little more detail together.

1)Programming:

  • Algorithmic approach
  • Programming logic
  • Big data technologies(Spark, Hive, Impala, DBS, etc.)
  • SQL(databases), NoSQL, Bash Script, R, Python, Scala, SPSS, SAS, MATLAB, etc.
  • Cloud technologies (AWS, Google Cloud, Microsoft Azure, IBM, etc.)

2)Statistical Learning (SL):

  • Tidy data process and data preprocessing
  • Regression Models
  • Linearity and causality
  • Inference Statistics
  • Multivariate Statistical Methods

3)Machine Learning(ML)

  • Classification
  • Clustering
  • Association Rule Learning
  • Text Mining, NLP
  • Reinforcement Learning
  • Deep Learning

4)Personal Skills

  • Being Able To Ask The Right Questions
  • Analytical Perspective
  • Problem Solving Ability
  • Storytelling and presentation ability

As a result, we talked briefly about the definition, stages, and requirements of data mining in this blog. Hope to see you in our next blog.

REFERENCES

https://iskulubu.com/teknoloji/veri-madenciligi-data-mining-nedir/

https://vizyonergenc.com/icerik/5-temel-soruda-veri-madenciligi-data-mining-nedir

https://www.veribilimiokulu.com/nasil-veri-bilimci-olunur/

https://trends.google.com/trends/explore?q=data%20mining,data%20miner

https://www.dreamstime.com/four-stages-data-mining-process-image194483251

https://www.kozmoslisesi.com/veri-madenciligi-data-mining-nedir/