Data Analysis and Visualization with Python – 2

We continue to make visualizations on the Iris dataset I used in my previous article. There are 2 most frequently used libraries for data visualization. Of these libraries, matplotlib is known by many people, just as I know. In addition, our second library is seaborn. In this article, we will witness the visualization of data with the help of libraries.

🔐 You need to enter the link for the Colab link I use.

Data Visualization Libraries

1. Seaborn: Statistical Data Visualization Library

Seaborn is a Python data visualization library based on Matplotlib. It provides a high-level interface to draw attractive and informative statistical graphs. Visit the setup page to see how you can download the package and start using it.

Seaborn

We can say that the difference compared to Matplotlib is that it has more customization options.

Seaborn Samples

In the image I gave above, we see how we can visualize the data thanks to Seaborn. It is possible to display our data in many different graphics and forms.

2. Matplotlib: Visualization with Python

Matplotlib; it is a comprehensive library for creating static, animated, and interactive visualizations in Python.

Matplotlib Logo

Matplotlib was originally written by John D. Hunter, has an active development community ever since.

Plots

Likewise, in the visual I have given here, there are visualization forms that can be made with Matplotlib.

🧷 Click on the link to view the plot, or graphics, in the Matplotlib library.

  • Line Plots: It shows the relationship between two variables in lines.

Line plots

  • Scatter Plots: As the name suggests, this relationship between two variables is shown as distributed points.

Scatter Plots

✨ I wanted to use the seaborn library to measure the relationship between the variables in the Iris data set.

Uploading Seaborn

After including the Seaborn library in our project, we provide the graph by entering various parameters. Here we have compared the relationship between sepal_length and petal_width attributes over dataframe. The cmap variable is the variable that determines the color palette we use in our chart. It can be changed upon request. The variables indicates the size of the points in the scatter chart given here as points.

Data Visulatizaton

We have come to the end of another article. Stay healthy ✨

REFERENCES

  1. https://seaborn.pydata.org.
  2. https://matplotlib.org.
  3. Machine Learning Days | Merve Noyan | Data Visualization | Study Jams 2 |, https://www.youtube.com/watch?v=JL35pUrth4g&t=640s.
  4. Matplotlib, Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Matplotlib.
  5. https://jakevdp.github.io/PythonDataScienceHandbook/04.02-simple-scatter-plots.html.
  6. https://jakevdp.github.io/PythonDataScienceHandbook/04.01-simple-line-plots.html.
  7. https://matplotlib.org/3.1.1/tutorials/colors/colormaps.html.

 

 

 

 

 

 

 

Python ile Veri Analizi ve Görselleştirme – 2

Bir önceki yazımda kullandığım Iris veri seti üzerinde görselleştirme yapmaya devam ediyoruz. Veri görselleştirme için en sık kullanılan 2 adet kütüphane vardır. Bu kütüphanelerden matplotlib tıpkı benim bildiğim gibi birçok kişi tarafından bilinmektedir. Bunun yanı sıra 2. kütüphanemiz ise seaborn olmaktadır. Bu yazıda verilerin kütüphaneler yardımı ile görselleştirilmesine tanıklık edeceğiz.

🔐 Kullandığım Colab bağlantısı için linke girmeniz gerekmektedir.

Veri Görselleştirme Kütüphaneleri

1. Seaborn: Statistical Data Visualization Library ( İstatistiksel Veri Görselleştirme Kitaplığı )

Seaborn, Matplotlib tabanlı bir Python veri görselleştirme kitaplığıdır . Çekici ve bilgilendirici istatistiksel grafikler çizmek için üst düzey bir arayüz sağlar. Paketi nasıl indirebileceğinizi ve kullanmaya başlayabileceğinizi görmek için kurulum sayfasını ziyaret ediniz.

Seaborn

Matplotlib’ e göre farkı daha fazla özelleştirme seçeneğinin olması diyebiliriz.

Seaborn SamplesYukarıda yer verdiğim görselde Seaborn sayesinde verileri nasıl görselleştirebileceğimizi görmekteyiz. Birçok farklı grafik ve formlarda verilerimizi sergilememiz mümkün.

2. Matplotlib: Visualization with Python

Matplotlib; Python’da statik, animasyonlu ve etkileşimli görselleştirmeler oluşturmak için kapsamlı bir kütüphanedir.

Matplotlib Logo

Matplotlib orijinal olarak John D. Hunter tarafından yazılmıştır , o zamandan beri aktif bir geliştirme topluluğuna sahiptir. 

Seaborn Samples

Aynı şekilde burada verdiğim görselde ise Matplotlib ile yapılabilecek görselleştirme formları bulunmaktadır.

🧷 Matplotlib kitaplığındaki plot yani grafikleri incelemek için bağlantıya tıklayınız.

  • Line Plots ( Çizgi Grafikleri): İki değişken arasındaki ilişkiyi çizgiler halinde göstermektedir.

Line plots

  • Scatter Plots ( Dağılım Grafikleri ): İki değişken arasında var olan bu ilişkiyi isminden de anlaşılacağı üzere dağıtık noktalar halinde gösterilmektedir.

Scatter Plots

✨ Iris veri setinde yer alan değişkenlerin birbirleri ile olan ilişkisini ölçmek adına seaborn kütüphanesini kullanmak istedim.

Uploading Seaborn

Seaborn kütüphanesini projemize dahil ettikten sonra çeşitli parametreleri girerek grafiğin oluşmasını sağlamaktayız. Burada dataframe üzerinden sepal_length ve petal_width öznitelikleri arasındaki ilişkinin karşılaştırılmasını gerçekleştirdik. cmap değişkeni ise grafiğimizde kullandığımız renk paletinin belirlendiği değişkendir. İsteğe göre değiştirilebilmektedir. s değişkeni ise burada noktalar halinde verilen scatter grafiğindeki noktaların büyüklüğünü belirtmektedir.

Data Visulatizaton

Bir yazının daha sonuna gelmiş bulunmaktayız. Sağlıcakla kalın ✨

REFERANSLAR

  1. https://seaborn.pydata.org.
  2. https://matplotlib.org.
  3. Machine Learning Days | Merve Noyan | Data Visualization | Study Jams 2 |, https://www.youtube.com/watch?v=JL35pUrth4g&t=640s.
  4. Matplotlib, Wikipedia, The Free Encyclopedia, https://en.wikipedia.org/wiki/Matplotlib.
  5. https://jakevdp.github.io/PythonDataScienceHandbook/04.02-simple-scatter-plots.html.
  6. https://jakevdp.github.io/PythonDataScienceHandbook/04.01-simple-line-plots.html.
  7. https://matplotlib.org/3.1.1/tutorials/colors/colormaps.html.