Featured Image for Keras

A Quick Start to Keras and TensorFlow

Keras is a deep learning library designed in the Python language. If you have worked on a deep learning project or are familiar with this area, you have definitely encountered Keras. There are many options in it that will allow you to create deep learning models and provide an environment for us to train our data.

Keras was originally developed to allow researchers to conduct faster trials.

Indeed, Keras is working as fast as possible for data training and pre-processing. If you want to get to know Keras better, you can access their documentation via this link.

Prominent Advantages of Keras

🔹Allows you to perform operations on both the CPU and GPU.

🔹It contains predefined modules for convoluted and iterative networks.

Keras is a deep learning API written in Python that runs on the machine learning platform Theano and TensorFlow.

🔹Keras supports all versions starting with Python 2.7.

Keras, Tensorflow, Theano and CNTK

Keras is the library that offers structures that can realize high-level deep learning models. In this article, we will define the backend engines that we use in our projects many times. Below are these engines running in the background, we include the use of TensorFlow.

Keras Upload

Activation Function

🔹 We can apply the libraries we want to use by selecting them as shown below. There are 3 backend applications that we use. These are TensorFlow, Theano, and Microsoft Cognitive Toolkit (CNTK) backend implementations.

Uploading Library

The platforms you see below are the platforms we encounter a lot in deep learning. As a footnote, I recommend GPU-based work when using TensorFlow. In terms of performance, you will find that with GPU usage, you will get faster and more performance results.

In summary, Keras works in harmony with these 3 libraries. In addition, it works by replacing the backend engine with these three libraries without making any changes to the code. Let’s take a closer look at TensorFlow, which we can use together with Keras.

TensorFlow

➡️ Let’s provide a version check if Python and Pip are installed for the project you are going to work with.

Version Control

➡️ I continue to work for my Mask RCNN project, where I am actively working. You can also create any project or create a segmentation project like me. If you want to continue in the same project, you can access the list of required libraries by clicking on the link.

Collecting Requirements

If you want, you can also upload these libraries one by one. But I require it in terms of being fast.I’m uploading it as a requirements.txt file.

➡️ Let’s go back to Keras and TensorFlow without surprising our goal. We can meet in another article for my Mask RCNN project. Now let’s make a quick introduction to TensorFlow. Let’s import both our project and print the version we use.

TensorFlow

➡️ As you can see as the output, I am using version 2.3.1 of TensorFlow. As I said, You can use it based on CPU or GPU.

Output Version

➡️ Tensorflow as follows when pre-processing the data. We can continue our operations by including the keras.preprocessing module. It seems passive because I am not actively running the method now, but when we write the method that we will use, its color will be activated automatically.

Tensorflow Preprocessing

➡️As an example, we can perform pre-processing with TensorfFlow as follows. We divide our data set into training and testing, and we know that with the validation_split variable, 20% is divided into test data.

In this way, we have made a fast start to Keras and TensorFlow with you. I hope to see you in my next post. Stay healthy ✨

REFERENCES

  1. https://keras.io/about/.
  2. Wikipedia, The free encyclopedia, https://en.wikipedia.org/wiki/Keras.
  3. https://keras.rstudio.com/articles/backend.html.
  4. Francois Chollet, Deep Learning with Python, Publishing Buzdagi.
  5. https://www.tensorflow.org.
  6. https://www.tensorflow.org/tutorials/keras/text_classification.

 

 

Featured Image for Keras

Keras ve TensorFlow’a Hızlı Bir Başlangıç

Keras, Python dilinde tasarlanmış bir derin öğrenme kütüphanesidir. Bir derin öğrenme projesinde çalıştıysanız veya bu alana aşinalığınız var ise mutlaka Keras ile karşılaşmışsınız demektir. İçerisinde derin öğrenme modellerinin oluşturulmasına imkan verecek ve verilerimizi eğitmemiz için ortam sağlayacak birçok seçenek mevcuttur.

Keras başlangıçta araştırmacıların daha hızlı denemeler yapabilmeleri için geliştirilmiştir.

Keras, gerçekten de veri eğitimi ve ön işlenmesi için olabildiğince hızlı çalışmaktadır. Keras’ı daha yakından tanımak isterseniz bu link üzerinden kendi dokümantasyonlarına erişim sağlayabilirsiniz.

Keras’ın Öne Çıkan Avantajları

🔹Hem CPU hem GPU üzerinde işlemlerinizi gerçekleştirebilmenizi sağlar.

🔹Evrişimli ve yinelemeli ağlar için  önceden tanımlı modüller barındırmaktadır.

 

Keras, makine öğrenimi platformu Theano ve TensorFlow üzerinde çalışan Python’da yazılmış bir derin öğrenme API’sidir.

🔹 Keras, Python 2.7′ den itibaren tüm versiyonları desteklemektedir.

Keras, Tensorflow, Theano ve CNTK

Keras, yüksek seviyeli derin öğrenme modellerini gerçekleştirebilecek yapıları sunan kütüphanedir. Birçok kez projelerimizde kullandığımız backend enginleri bu yazıda tanımlayacağız. Sanırım Türkçe olarak bu kavramı arka uç motor olarak tanımlıyorlar ancak ben kavramı türkçeleştirmeyeceğim. Arka planda çalışan bu motorlardan aşağıda Tensorflow’un kullanımına yer vermekteyiz.

Keras Upload

Activation Function

🔹 Kullanmak istediğimiz kütüphaneleri aşağıdaki görseldeki gibi seçerek uygulayabiliriz. Kullanmakta olduğumuz 3 adet backend uygulaması bulunmaktadır. Bunlar TensorFlow, Theano ve Microsoft Cognitive Toolkit (CNTK) backend uygulamalarıdır.

Uploading Library

Aşağıda gördüğünüz platformlar derin öğrenmede çokça karşılaştığımız platformlardır. Dipnot olarak TensorFlow kullanırken GPU tabanlı çalışmanızı öneririm. Performans açısından GPU kullanımı ile daha hızlı ve performanslı sonuçlar elde ettiğinizi göreceksiniz.

Özetle demek istediğim, Keras bu 3 kütüphane ile uyumlu olarak çalışmaktadır. Üstelik kodda herhangi bir değişiklik yapmadan bu üç kütüphane ile backend engine değiştirerek çalışmaktadır.

Gelin sizlerle birlikte Keras ile birlikte kullanabileceğimiz TensorFlow’ a daha yakından değinelim.

TensorFlow

➡️ Çalışacağınız proje için Python ve Pip kurulu olup olmadığını versiyon kontrolü ile sağlayalım.

Version Control

➡️ Aktif olarak çalıştığım Mask RCNN projem için çalışmalara devam ediyorum. Sizler de herhangi bir proje oluşturabilir veya benim gibi segmentasyon projesi oluşturabilirsiniz. Eğer aynı projede devam etmek istiyorsanız bağlantıya tıklayarak gerekli olan kütüphanelerin listesine erişebilirsiniz.

Collecting Requirements

Dilerseniz bu kütüphaneleri teker teker de yükleyebilirsiniz. Fakat ben hızlı olması açısından requirements.txt dosyası olarak yüklemekteyim.

➡️ Amacımızdan şaşmadan, Keras ve TensorFlow’a geri dönüş yapalım. Mask RCNN projem için başka bir yazıda daha buluşabiliriz. Şimdi TensorFlow’ a hızlıca bir giriş yapalım. Hem projemize import edelim hem de kullandığımız versiyonu yazdıralım.

TensorFlow

Çıktı olarak gördüğünüz üzere TensorFlow’ un 2.3.1 versiyonunu kullanmaktayım. Söylediğim gibi bunu CPU veya GPU tabanlı kullanabilirsiniz.

Output Version

➡️ Veride ön işleme yaparken ise aşağıdaki gibi tensorflow.keras tpreprocessing modülünü dahil ederek işlemlerimize devam edebiliyoruz. Şuan aktif olarak metot çalıştırmadığım için pasif görünüyor ancak kullanacağımız metotu yazdığımızda otomatik olarak rengi aktifleşecektir.Tensorflow Preprocessing

➡️ Örnek olarak TensorfFlow ile ön işlemeyi aşağıdaki gibi gerçekleştirebiliyoruz. Veri setimizi eğitim ve test olarak ayırıyoruz ve validation_split değişkeni ile %20’sinin test verisine ayrıldığını biliyoruz.

Bu şekilde sizlerle birlikte Keras’ a ve TensorFlow’a hızlı bir başlangıç yapmış bulunmaktayız. Bir sonraki yazımda görüşmek dileğiyle. Esen kalın ✨

REFERANSLAR

  1. https://keras.io/about/.
  2. Wikipedia, The free encyclopedia, https://en.wikipedia.org/wiki/Keras.
  3. https://keras.rstudio.com/articles/backend.html.
  4. François Chollet, Python ile Derin Öğrenme, Buzdağı Yayıncılık.
  5. https://www.tensorflow.org.
  6. https://www.tensorflow.org/tutorials/keras/text_classification.

Article Review: Multi-Category Classification with CNN

Classification of Multi-Category Images Using Deep Learning: A Convolutional Neural Network Model

In this article, the article ‘Classifying multi-category images using Deep Learning: A Convolutional Neural Network Model’ presented in India in 2017 by Ardhendu Bandhu, Sanjiban Sekhar Roy is being reviewed. An image classification model using a convolutional neural network is presented with TensorFlow. TensorFlow is a popular open-source library for machine learning and deep neural networks. A multi-category image dataset was considered for classification. Traditional back propagation neural network; has an input layer, hidden layer, and an output. A convolutional neural network has a convolutional layer and a maximum pooling layer. We train this proposed classifier to calculate the decision boundary of the image dataset. Real-world data is mostly untagged and unstructured. This unstructured data can be an image, audio, and text data. Useful information cannot be easily derived from neural networks that are shallow, meaning they are those with fewer hidden layers. A deep neural network-based CNN classifier is proposed, which has many hidden layers and can obtain meaningful information from images.

Keywords: Image, Classification, Convolutional Neural Network, TensorFlow, Deep Neural Network.

First of all, let’s examine what classification is so that we can understand the steps laid out in the project. Image Classification refers to the function of classifying images from a multi-class set of images. To classify an image dataset into multiple classes or categories, there must be a good understanding between the dataset and classes.

In this article;

  1. Convolutional Neural Network (CNN) based on deep learning is proposed to classify images.
  2. The proposed model achieves high accuracy after repeating 10,000 times within the dataset containing 20,000 images of dogs and cats, which takes about 300 minutes to train and validate the dataset.

In this project, a convolutional neural network consisting of a convolutional layer, RELU function, a pooling layer, and a fully connected layer is used. A convolutional neural network is an automatic choice when it comes to image recognition using deep learning.

Convolutional Neural Network

For classification purposes, it has the architecture as the convolutional network [INPUT-CONV-RELU-POOL-FC].

INPUT- Raw pixel values as images.

CONV- Contents output in the first cluster of neurons.

RELU- It applies the activation function.

POOL- Performs downsampling.

FC- Calculates the class score.

In this publication, a multi-level deep learning system for picture characterization is planned and implemented. Especially the proposed structure;

1) The picture shows how to find nearby neurons that are discriminatory and non-instructive for grouping problem.

2) Given these areas, it is shown how to view the level classifier.

METHODS

A data set containing 20,000 dog and cat images from the Kaggle dataset was used. The Kaggle database has a total of 25000 images available. Images are divided into training and test sets. 12,000 images are entered in the training set and 8,000 images in the test set. Split dataset of the training set and test set helps cross-validation of data and provides a check over errors; Cross-validation checks whether the proposed classifier classifies cat or dog images correctly.

The following experimental setup is done on Spyder, a scientific Python development environment.

  1. First of all, Scipy, Numpy, and Tensorflow should be used as necessary.
  2. A start time, training path, and test track must be constant. Image height and image width were provided as 64 pixels. The image dataset containing 20,000 images is then loaded. Due to a large number of dimensions, it is resized and iterated. This period takes approximately 5-10 minutes.
  3. This data is fed by TensorFlow. In TensorFlow, all data is passed between operations in a calculation chart. Properties and labels must be in the form of a matrix for the tensors to easily interpret this situation.
  4. Tensorflow Prediction: To call data within the model, we start the session with an additional argument where the name of all placeholders with the corresponding data is placed. Because the data in TensorFlow is passed as a variable, it must be initialized before a graph can be run in a session. To update the value of a variable, we define an update function that can then run.
  5. After the variables are initialized, we print the initial value of the state variable and run the update process. After that, the rotation of the activation function, the choice of the activation function has a great influence on the behavior of the network. The activation function for a specific node is an input or output of the specific node provided a set of inputs.
  6. Next, we define the hyperparameters we will need to train our login features. In more complex neural networks, we encounter more hyperparameters. Some of our hyperparameters can be like the learning rate.
    Another hyperparameter is the number of iterations we train our data. The next hyperparameter is the batch size, which chooses the size of the set of images to send for classification at one time.
  7. Finally, after all that, we start the TensorFlow session, which makes TensorFlow work, because without starting a session a TensorFlow won’t work. After that, our model will start the training process.

RESULTS

🖇 As deep architecture, we used a convolutional neural network and also implemented the TensorFlow deep learning library. The experimental results below were done on Spyder, a scientific Python development environment. 20,000 images were used and the batch is fixed at 100 for you.

🖇 It is essential to examine the accuracy of the models in terms of test data rather than training data. To run the convolutional neural network using TensorFlow, the Windows 10 machine was used, the hardware was specified to have an 8GB of RAM with the CPU version of TensorFlow.

📌 As the number of iterations increases, training accuracy increases, but so does our training time. Table 1 shows the number line with the accuracy we got.

Number of iterations vs AccuracyThe graph has become almost constant after several thousand iterations. Different batch size values can lead to different results. We set a batch size value of 100 for images.

✨ In this article, a high accuracy rate was obtained in classifying images with the proposed method. The CNN neural network was implemented using TensorFlow. It was observed that the classifier performed well in terms of accuracy. However, a CPU based system was used. So the experiment took extra training time, if a GPU-based system was used, training time would be shortened. The CNN model can be applied in solving the complex image classification problem related to medical imaging and other fields.

REFERENCES

  1. https://www.researchgate.net/figure/Artificial-neural-network-architecture-ANN-i-h-1-h-2-h-n-o_fig1_321259051.
  2. Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. science, 313(5786), 504- 507.
  3. Yoshua Bengio, “Learning Deep Architectures for AI”, Dept. IRO, Universite de Montreal C.P. 6128, Montreal, Qc, H3C 3J7, Canada, Technical Report 1312.
  4. Yann LeCun, Yoshua Bengio & Geoffrey Hinton, “Deep learning “, NATURE |vol 521 | 28 May 2015
  5. Yicong Zhou and Yantao Wei, “Learning Hierarchical Spectral–Spatial Features for Hyperspectral Image Classification”, IEEE Transactions on cybernetics, Vol. 46, No.7, July 2016.

Makale İncelemesi:CNN ile Çok Kategorili Sınıflandırma

Derin Öğrenmeyi Kullanarak Çok Kategorili Görüntülerin Sınıflandırılması : Evrişimli Bir Sinir Ağı Modeli

Bu yazıda, Ardhendu Bandhu, Sanjiban Sekhar Roy tarafından Hindistan’da 2017 senesinde ortaya konulmuş Classifying multi-category images using Deep Learning: A Convolutional Neural Network Model’ adlı makalenin incelemesi yapılmaktadır. TensorFlow ile evrişimsel sinir ağı kullanan bir görüntü sınıflandırma modeli sunulmaktadır. TensorFlow, makine öğrenimi ve derin sinir ağları için popüler bir açık kaynak kütüphanesidir. Sınıflandırma için çok kategorili bir görüntü veri kümesi dikkate alınmıştır. Geleneksel geri yayılım sinir ağı; bir giriş katmanı, gizli katman ve bir çıktıya sahiptir. Evrişimsel sinir ağında, bir evrişimsel tabaka ve bir maksimum havuzlama katmanı (pooling layer) vardır. Bu önerilen sınıflandırıcıyı, görüntü veri kümesinin karar sınırını hesaplamak için eğitiyoruz. Gerçek dünyadaki veriler çoğunlukla etiketlenmemiş ve yapılandırılmamış biçimdedir. Bu yapılandırılmamış veriler görüntü, ses ve metin verileri olabilir. Yararlı bilgiler sığ olan sinir ağlarından kolayca türetilemez, yani bunlar daha az sayıda gizli tabakaya sahip olanlardır. Çok sayıda gizli katmana sahip olan ve görüntülerden anlamlı bilgiler elde edebilen derin sinir ağı tabanlı CNN sınıflandırıcıyı önerilmektedir.

Anahtar kelimeler: Görüntü, Sınıflandırma, Evrişimsel Sinir Ağı, TensorFlow, Derin Sinir Ağı.

Öncelikle projede ortaya konulmuş adımları anlayabilmemiz için sınıflandırmanın ne olduğunu inceleyelim. Görüntü Sınıflandırması, çok sınıflı bir görüntü kümesinden görüntüleri sınıflandırmanın işlevini ifade eder. Bir görüntü veri kümesini birden çok sınıfa veya kategoriye sınıflandırmak için, veri kümesi ile sınıflar arasında iyi bir anlayış olmalıdır.

Bu makalede;

1. Görüntüleri sınıflandırmak için derin öğrenme tabanlı Evrişimsel Sinir Ağı (CNN) önerilmektedir.

2. Önerilen model, veri kümesini eğitmek ve doğrulamak için yaklaşık 300 dakika süren köpek ve kedilerin 20.000 görüntüsünü içeren veri kümesi içinde 10.000 kez yinelendikten sonra yüksek doğruluk elde eder.

Bu projede, bir evrişimsel tabaka, RELU fonksiyonu, bir pooling (havuzlama) tabakası ve fully connected (tam bağlı) bir tabakadan oluşan bir evrişimsel sinir ağı kullanılmaktadır. Evrişimsel sinir ağı, derin öğrenmeyi kullanarak görüntü tanıma söz konusu olduğunda otomatik bir seçimdir.

Convolutional Neural Network

Sınıflandırma amacıyla, evrişimsel ağı [INPUT-CONV-RELU-POOL-FC] olarak mimariye sahiptir.

INPUT- Görüntü olarak ham piksel değerleri.

CONV- İçeriği nöronların ilk kümesindeki çıktı.

RELU- Aktivasyon fonksiyonunu uygular.

POOL- Aşağı örnekleme işlemi yapar.

FC- Sınıf puanını hesaplar.

Bu yayında, resim karakterizasyonu için çok kademeli bir derin öğrenme sistemi planlanır ve uygulanır. Özellikle önerilen yapı;

1) Resim gruplama sorunu için ayrımcı ve öğretici olmayan yakındaki nöronları nasıl bulunacağı gösterilmektedir.

2) Bu alanlar göz önüne alındığında seviye sınıflandırıcıyı nasıl görüntüleyebileceğini gösterilmektedir.

YÖNTEMLER

Kaggle veri tabanından 20.000 tane köpek ve kedi görüntüsü içeren bir veri kümesi kullanılmıştır. Kaggle veri tabanında, mevcut toplam 25000 görüntü vardır. Görüntüler eğitim ve test setine bölünmektedir. Eğitim setine 12.000 görüntü ve test setine 8.000 görüntü girilmektedir. Eğitim seti ve test setinin bölünmüş veri kümesi, verilerin çapraz doğrulanmasına yardımcı olur ve hatalar üzerinde bir kontrol sağlar; çapraz doğrulama, önerilen sınıflandırıcının kedi veya köpek görüntülerini doğru bir şekilde sınıflandırıp sınıflandırmadığını kontrol eder.

Aşağıdaki deneysel kurulum, bilimsel bir Python geliştirme ortamı olan Spyder üzerinde yapılır.

  1. İlk olarak Scipy, Numpy ve Tensorflow gibi gerekli kullanılmalıdır.
  2. Bir başlangıç zamanı, eğitim yolu ve bir test yolu sabit olarak olmalıdır. Görüntü yüksekliği ve görüntü genişliği 64 piksel olarak sağlandı. Sonra 20.000 görüntü içeren görüntü veri kümesi yüklenir. Boyutların büyük sayılar olmasınedeniyle yeniden boyutlandırılır ve yinelenir. Bu süre yaklaşık olarak 5-10 dakika sürmektedir.
  3. Bu veriler TensorFlow ile beslenir. TensorFlowda, tüm veriler bir hesaplama grafiğindeki işlemler arasında geçirilir.Tensorlerin bu durumu kolayca yorumlayabilmesi için özellikler ve etiketler bir matris formunda olmalıdır.
  4. Tensorflow Tahmini: Model içindeki verileri çağırmak için, oturumu, ilgili verilerle tüm yer tutucuların adının yerleştirildiği ek bir argüman ile başlatırız. TensorFlowdaki veriler değişken şeklinde geçirildiğinden, bir grafik bir oturumda çalıştırılmadan önce başlatılması gerekir.Bir değişkenin değerini güncellemek için, daha sonra çalıştırabilecek bir güncelleme işlevi tanımlarız.
  5. Değişkenler başlatıldıktan sonra, durum değişkeninin başlangıç değerini yazdırırız ve güncelleme işlemini çalıştırırız. Bundan sonra aktivasyon fonksiyonunun dönüşü, aktivasyon fonksiyonunun seçimi ağın davranışı üzerinde büyük bir etkiye sahiptir. Belirli bir düğüm için etkinleştirme işlevi, bir girdi veya bir girdi kümesi sağlanan belirli düğümün çıktısıdır.
  6. Ardından, giriş özelliklerimizi eğitmek için ihtiyaç duyacağımız hiper parametreleri tanımlarız. Daha karmaşık sinir ağlarında daha çok hiper parametreyle karşılaşmaktayız.Hiper parametrelerimizden bazıları öğrenme oranı gibi olabilir.
     Başka bir hiper parametre, verilerimizi kaç kez eğittiğimiz yineleme sayısıdır. Bir sonraki hiper parametre, bir seferde sınıflandırma için gönderilecek görüntü kümesinin boyutunu seçen batch size boyutudur.
  7. Son olarak, tüm bunlardan sonra, TensorFlow oturumunu başlatırız, bu da TensorFlow’un çalışmasını sağlar, çünkü bir oturumu başlatmadan bir TensorFlow işe yaramaz. Bundan sonra modelimiz eğitim sürecine başlayacaktır.

SONUÇLAR

🖇 Derin mimari olarak evrişimsel bir sinir ağı kullandık ve bununla birlikte TensorFlow derin öğrenme kütüphanesini uyguladık. Aşağıdaki deneysel sonuçlar, bilimsel bir Python geliştirme ortamı olan Spyder üzerinde yapıldı. 20.000 görüntü kullanıldı ve batch size 100’e sabitlendi.

🖇 Modellerin doğruluğunun, eğitim verilerinden ziyade test verileri açısından incelenmesi esastır. TensorFlow kullanarakevrişimsel sinir ağını çalıştırmak için, Windows 10 makinesi kullanıldı, donanımın TensorFlow’un CPU sürümüne sahip olan bir 8 GB RAM ‘e sahip olduğu belirtilmiş.

📌 Yineleme sayısı arttıkça eğitim doğruluğu da artar, ancak eğitim süremiz de artar. Tablo 1, elde ettiğimiz doğrulukla sayı çizgisini gösterir.

Number of iterations vs Accuracy

Grafik, birkaç bin tekrarlamadan sonra neredeyse sabite ulaşmıştır. Farklı batch size değerleri farklı sonuçlara yol açabilir. Biz görüntüler için bir batch size değeri 100 olarak belirlenmiştir.

✨ Bu yazıda, önerilen yöntem ile görüntülerin sınıflandırılmasında yüksek doğruluk oranı elde etmiştir. CNN sinir ağı TensorFlow kullanılarak uygulandı. Sınıflandırıcının doğruluğu açısından iyi performans gösterdiği gözlendi. Bununlabirlikte, CPU tabanlı bir sistem kullanıldı. Bu yüzden deney ekstra eğitim süresi aldı, eğer GPU tabanlı bir sistem kullanılsaydı, eğitim süresi kısalırdı. CNN modeli, tıbbi görüntüleme ve diğer alanlarla ilgili karmaşık görüntü sınıflandırma probleminin çözümünde uygulanabilir.

REFERANSLAR

  1. https://www.researchgate.net/figure/Artificial-neural-network-architecture-ANN-i-h-1-h-2-h-n-o_fig1_321259051.
  2. Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. science, 313(5786), 504- 507.
  3. Yoshua Bengio, “Learning Deep Architectures for AI”, Dept. IRO, Universite de Montreal C.P. 6128, Montreal, Qc, H3C 3J7, Canada, Technical Report 1312.
  4. Yann LeCun, Yoshua Bengio & Geoffrey Hinton, “Deep learning “, NATURE |vol 521 | 28 may 2015
  5. Yicong Zhou and Yantao Wei, “Learning Hierarchical Spectral–Spatial Features for Hyperspectral Image Classification”,IEEE Transactions on cybernetics, Vol. 46, No.7, July 2016.

TensorFlow

Hello everybody, in this blog i want to talk about one of the free and most used open source deep learning library called TensorFlow. So why do we call it as open source? Open source allows the user to view and edit the codes of the software and to inform the user about program development. So you can easily create models with tensorflow, access machine learning pipeline with TensorFlow Extended (TFX), and train and deploy models in JavaScript environments with TensorFlow.js. You can also create complex topologies with features such as Functional API and Model Subclassing API.

What is TensorFlow?

TensorFlow was developed by Google Brain team initially to conduct machine learning and deep neural networks research and in 2015 TensorFlow codes were made available to everyone.TensorFlow is a library used for numerical computation using data flow charts in mathematics and if the literal meaning of tensor is a geometric object in which multidimensional data can be symbolized.

As you see above, tensors are multidimensional arrays that allow you to represent only higher dimensional datas. In deep learning, we deal with high-dimensional data sets where dimensions refer to different properties found in the data set.

Usage examples of TensorFlow

1)TensorFlow can be used efficiently in sound base applications with Artificial Neural Networks. These are; Voice recognition, Voice search, Emotion analysis and Flaw detection.

2) Further popular uses of TensorFlow are, text based applications such as sentimental analysis (CRM, Social Media), Threat Detection (Social Media, Government) and Fraud Detection (Insurance, Finance).As an example PayPal use TensorFlow for fraud detection.

3) It can also be used in Face Recognition, Image Search, Image Classification, Motion Detection, Machine Vision and Photo Clustering, Automotive, Aviation and Healthcare Industries.As an example Airbnb uses TensorFlow to categorize images and improve guest experience.

4) TensorFlow Time Series algorithms are used for analyzing time series data in order to extract meaningful statistics. As an example Naver automatically classifies shopping product categories with tensorflow

5) TensorFlow neural networks also work on video data. This is mainly used in Motion Detection, Real-Time Thread Detection in Gaming, Security, Airports and UX/UI fields.As an example Airbus uses tensorflow to extract information from satellite imagery and provide insights to customers.

Where can i learn TensorFlow?

You can join course “Introduction to TensorFlow for Artificial Intelligence, Machine Learning, and Deep Learning” on Coursera and “Intro to TensorFlow for Deep Learning” on Udacity for free.Tutorials for beginners and experts are available on TensorFlow’s official site.   You can find Mnist data set and other “Hello World” examples that I also have applied before.

As a result, we talked about the meaning of the word tensorflow, what tensorflow is, the usage areas of tensorflow and how we can learn. As it can be understood from the blog, world-leading companies prefer tensorflow for many things such as image classification, voice recognition, disease detection. Step into this magical world without wasting time! Hope to see you in our next blog…

REFERENCES

https://www.tensorflow.org/?hl=tr

https://www.biltektasarim.com/blog/acik-kaynak-kodu-nedir

https://devhunteryz.wordpress.com/2018/06/27/tensorflowun-temeli-mantigi/

https://tr.wikipedia.org/wiki/Tens%C3%B6r

http://devnot.com/2019/tensorflow-nedir-nasil-kullanilir/

https://www.exastax.com/deep-learning/top-five-use-cases-of-tensorflow/#:~:text=Voice%2FSound%20Recognition,Automotive%2C%20Security%20and%20UX%2FUI